作为一种完全致动的系统,全向多电流飞机(OMAVS)的机动性比传统不足的多电流飞机具有更灵活的机动性,并且它在复杂环境中的障碍物避免飞行中也具有更大的优势。可以发挥OMAV的潜力的整个自由轨迹。到配置空间的高维度,使设计的轨迹生成算法有效且可扩展是一项挑战。本文旨在实现复杂环境中OMAV的障碍避免计划。 OMAVS的6-DOF轨迹生成框架首次根据几何约束的最小控制工作(MINCO)轨迹生成框架设计。根据一系列凸Polyhedra代表的安全区域,与飞机的整体形状和整体形状和整体形状和整体形状和结合在一起。动态约束,该框架最终生成了无碰撞的最佳6-DOF轨迹。车辆的态度通过立体图投影将参数化为3D矢量。基于凉亭和PX4自动驾驶仪的示意实验是为了验证提议的框架的性能。
translated by 谷歌翻译
Navier-Stokes方程是描述液体和空气等流体运动的重要部分微分方程。由于Navier-Stokes方程的重要性,有效的数值方案的发展对科学和工程师都很重要。最近,随着AI技术的开发,已经设计了几种方法来整合深层神经网络,以模拟和推断不可压缩的Navier-Stokes方程所控制的流体动力学,这些方程可以以无网状和可不同的方式加速模拟或推断过程。在本文中,我们指出,现有的深入Navier-Stokes知情方法的能力仅限于处理非平滑或分数方程,这在现实中是两种关键情况。为此,我们提出了\ emph {深入的随机涡流方法}(drvm),该方法将神经网络与随机涡流动力学系统相结合,等效于Navier-Stokes方程。具体而言,随机涡流动力学激发了用于训练神经网络的基于蒙特卡洛的损失函数,从而避免通过自动差异计算衍生物。因此,DRVM不仅可以有效地求解涉及粗糙路径,非差异初始条件和分数运算符的Navier-Stokes方程,而且还继承了基于深度学习的求解器的无网格和可区分优势。我们对凯奇问题,参数求解器学习以及2-D和3-D不可压缩的Navier-Stokes方程的逆问题进行实验。所提出的方法为Navier-Stokes方程的仿真和推断提供了准确的结果。特别是对于包括奇异初始条件的情况,DRVM明显胜过现有的PINN方法。
translated by 谷歌翻译
随机部分微分方程(SPDE)是在包括大气科学和物理学在内的许多领域建模动力学的重要工具。神经操作员,几代神经网络具有无限维空间之间学习图的能力,是解决参数PDE的强大工具。但是,他们缺乏建模SPDE的能力,而SPDE通常由于驾驶噪声而定期较差。由于规律性结构的理论在分析SPDE方面取得了巨大成功,并提供了概念模型的特征向量,使SPDES的解决方案良好,我们提出了具有规律性结构(NORS)的神经操作员,该神经操作员结合了用于建模由SPDES驱动的动力学的功能向量。我们对各种SPDE进行实验,包括动态PHI41模型和2D随机Navier-Stokes方程,结果表明NORS是分辨率不变的,有效的,并且在较小量的数据级较低的误差中降低了一个数量级误差。
translated by 谷歌翻译
模型压缩(例如修剪和量化)已广泛应用于在资源有限的经典设备上优化神经网络。最近,对变分量子电路(VQC)的兴趣越来越大,即量子计算机上的一种神经网络(又称量子神经网络)。众所周知,近期的量子设备具有高噪声和有限的资源(即量子位,Qubits);但是,如何压缩量子神经网络尚未得到彻底研究。人们可能会认为将经典压缩技术应用于量子场景是很简单的。但是,本文表明,量子和经典神经网络的压缩之间存在差异。根据我们的观察,我们声称必须参与压缩过程。最重要的是,我们提出了第一个系统的框架,即CompVQC,以压缩量子神经网络(QNNS)。在CompVQC中,关键组件是一种新型的压缩算法,该算法基于乘数的交替方向方法(ADMM)。方法。实验证明了COMPVQC的优势,以微不足道的精度下降(<1%)降低了电路深度(几乎超过2.5%),这表现优于其他竞争对手。另一个有前途的事实是,我们的COMPVQC确实可以促进QNN在近期噪声量子设备上的鲁棒性。
translated by 谷歌翻译
最近,视觉变压器(VIT)在计算机视野中连续建立了新的里程碑,而高计算和内存成本使其在工业生产中的传播困难。修剪是一种用于硬件效率的传统模型压缩范例,已广泛应用于各种DNN结构。尽管如此,它含糊不清,如何在vit结构上进行独家修剪。考虑三个关键点:结构特征,VITS的内部数据模式和相关边缘设备部署,我们利用输入令牌稀疏性并提出了一种计算感知软修剪框架,可以在扁平的vanilla变压器上设置。和CNN型结构,例如基于池的Vit(坑)。更具体地说,我们设计了一种基于动态关注的多头令牌选择器,它是一个轻量级模块,用于自适应实例 - 明智令牌选择。我们进一步引入了一种软修剪技术,它将选择器模块生成的较少的信息令牌集成到将参与后续计算的包令牌,而不是完全丢弃。我们的框架通过我们所提出的计算感知培训策略,我们通过特定边缘设备的准确性和计算限制之间的权衡。实验结果表明,我们的框架显着降低了VIT的计算成本,同时在图像分类上保持了可比性。此外,我们的框架可以保证所识别的模型,以满足移动设备和FPGA的资源规范,甚至在移动平台上实现DEIT-T的实时执行。例如,我们的方法在移动设备上减少了DEIT-T至26毫秒的延迟(26%$ \ SIM 41%的41%),在移动设备上,在0.25%$ \ sim $ 4%的ImageNet上的前1个精度高出4%。我们的代码即将发布。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译